

MECHANICAL FLOW CATALOG

MARTFLOW

(R)

METERS

- *ICECUBE*TM
- ALUMINUM BODY
- HOT WATER/OIL
- DR. EDDY[®] TURBULENT FLOW

REGULATORS

- BRASS
- **DELTA-Q**[®]
- **MOLD TEMPERATURE**

CUSTOM ASSEMBLY SPECIFICATIONS

4500 E 142nd Street Grandview, MO 64030 USA Tel: 816-878-6675

3D CAD Data is available on demand

Form #SF-189 (06.2024)

MARTFLOW Mechanical Flowmeters

General Description

Smartflow mechanical flowmeters are durable, vane-operate devices that provide visual indication of flow rate in many differen styles and sizes. Rugged wetted parts are compatible with many process liquids.

Optional temperature and pressure gauges add functionality and flexibility to Smartflow flowmeters. Brass quick-connect fitti are available on the smaller flowmeters to create an excellent, portable tool for determining flow and locating clogged lines

Features and Benefits

- Compact size works well in restricted-space locations.
- Rugged construction gives years of dependable service.
- Variety of inlet sizes provides exactly the right connection.
- 210°F (99°C) Temperature Rating allows installation into a wide range of applications.
- Optional Temperature and Pressure Gauges give instant access to pressure and temperature information in addition to flow in one unit
- No Mounting Restrictions ease installation in any position without extra brackets or hardware.

Galvanic corrosion may occur in anodized aluminum components when installed in electrical connection with more noble metals such as copper. Use appropriate installation practices.

For best performance, mechanical flowmeters should be installed in the vertical position with the flow moving upwards

Turbulent Flow

Injection molders know that a certain rate of flow is needed to achieve turbulent flow i cooling lines. This concept applies to most cooling applications using a water-based coolant mixture. Charts below are for reference only. Turbulent Flow Rate is approximate based on Reynolds Number of 4000.

Passage	Nominal Pipe	Minimum Flow in GPM by Temperature			
Diameter	Size	40°F	120°F	200°F	
.44"	1/4"	0.88	0.31	0.18	
.59"	3/8"	1.16	0.42	0.24	
.72"	1/2"	1.41	0.51	0.29	

Passage	Nominal Pipe	Minimum Flow in LPM by Temperature			
Diameter	Size	4°C	49°C	93°C	
11mm	1/4"	3.3	1.2	0.7	
15mm	3/8"	4.4	1.6	0.9	
18mm	1/2"	5.3	1.9	1.1	

Use our on-line turbulent flow calculator to input additional sizes and cooling variables:

www.Smartflow-usa.com/ Turbulent-Flow-Rate-Calculator

2

Design and specifications are subject to change without notice.

IceCubeTM Flowmeters with Brass or Nylon Ends

Model Number

F3 -	D3 -	25
-------------	------	----

Inlet Size Brass Ends

Diass Dias	
1/4"NPT	F2
1/4"BSPP	F2B
3/8"NPT	F3
3/8"BSPP	F3B
1/2"NPT	F4
1/2"BSPP	F4B
3/4"NPT	F6
3/4"BSPP	F6B
Nylon Ends	
1/4"NPT	FP2
1/4"BSPP	FP2B
3/8"NPT	FP3
3/8"BSPP	FP3B
1/2"NPT	FP4
1/2"BSPP	FP4B

Flow Range

- 15
 0.2 1.5 gpm (gallons per minute)

 25
 0.5 2.5 gpm

 80
 1.0 8.0 gpm

 100
 2 10 lpm (liters per minute)
- **200** 5 20 lpm **300** 4 - 30 lpm

Accessories

- A Flowmeter only
- B Thermometer
- C1 Thermometer and 30 psi Pressure Gauge
- C2 Thermometer and 60 psi Pressure Gauge
- C3 Thermometer and 100 psi Pressure Gauge
- CL Thermometer and Liquid-Filled Pressure Gauge (100 psi)
- D1 *Thermometer, 30 psi Pressure Gauge, Quick Change Socket and Plug
- **D2** *Thermometer, 60 psi Pressure Gauge, Quick Change Socket and Plug
- **D3** *Thermometer, 100 psi Pressure Gauge, Quick Change Socket and Plug
- **DL** *Thermometer, Liquid-Filled Pressure Gauge (100 psi), Quick Change Socket and Plug
- E *Thermometer, Quick Change Socket and Plug
- F1 30 psi Pressure Gauge
- **F2** 60 psi Pressure Gauge
- F3 100 psi Pressure Gauge
- FL Liquid-Filled Pressure Gauge (100 psi)
- *Not available with 3/4" inlet or BSPP threads

Wetted Parts and Materials

End Caps Brass or	Glass-Filled Nylon
Body	Polysulfone
Vane	. Glass-Filled Nylon
Spring	Stainless Steel
O-Rings	EPDM
Cap Screws	Stainless Steel
Optional Gauge Block.	Brass
Optional Quick-Connect	ct Fittings Brass

Specifications

Flow Accuracy	±10% full scale
Operating Temperature m	ax210°F
	(99°C)
Operating Pressure max.	100 psi
	(6.9 bar)
Optional Thermometer	0 to 250°F
	(-20° to 120°C)
±2% acc	uracy (full scale)
Optional Pressure Gauge	±3% accuracy
	(full scale)

For Custom Manifold Assemblies and 3D CAD files of Standard Components Visit

ARTFLOW) Medium Mechanical Flowmeters

Model Number

							Wetted Parts and Materials
	F6	-	B	-)	20		BodyAnodized Aluminum Sight GlassPolysulfone VaneStainless Steel SpringStainless Steel PinStainless Steel GasketNeoprene
Inlet Size 3/4"NPT 3/4"BSPP 1"NPT 1"BSPP	F6 F6B F8 F8B				20 75	Flow Range 2 - 20 gpm (gallons per minute) 7 - 75 lpm (liters per minute)	Specifications Flow Accuracy±10% full scale Operating Temperature max210°F (99°C) Operating Pressure max100 psi (6.9 bar) Optional Thermometer0 to 250°F (-20° to 120°C) ±2% accuracy (full scale) Optional Pressure Gauge±3% accuracy (full scale)
			A B C1 C2 C3 CL F1 F2	Ac Flo The The The 30 60	ermo ermo ermo ermo ermo psi I psi I	sories eter only ometer ometer and 30 psi Pressu ometer and 60 psi Pressu ometer and 100 psi Pressu ometer and Liquid-Filled F Pressure Gauge Pressure Gauge	re Gauge re Gauge ure Gauge Pressure Gauge (100 psi)

F3 100 psi Pressure Gauge

FL Liquid-Filled Pressure Gauge (100 psi)

66 2.6 max height with temperature gauge Optional Sight Glass Thermometer Threaded Location both ends \bigcirc $(\mathbf{+})$ $(\mathbf{+})$ (\cdot) heeseese FLOW <u>44.5</u> 1.75 <u>76</u> 3.0 20000000 (O) $(\mathbf{+})$ $(\mathbf{+})$ $(\mathbf{+})$ <u>44.5</u> 1.75 Optional 81 3.2 Pressure Gauge Location max height with pressure gauge Linear = $\frac{mm}{inches}$

Galvanic corrosion may occur in anodized aluminum components when installed in electrical connection with more noble metals such as copper. Use appropriate installation practices.

4

Plastixs • 151 Memorial Drive • Unit H • Shrewsbury • MA • 01545 • 800-792-2223 • 508-842-1606 • www.plastixs.com • sales@plastixs.com

5

ARTFLOW) Large Mechanical Flowmeters

Model Number

	F8	
Inlet		
Size		
1"NPT	F8	
1"BSPP	F8B	
1-1/4"NPT	F10	
1-1/2"NPT	F12	
1-1/2"BSPP	F12B	
2"NPT	F16	
2"BSPP	F16B	
3"NPT	F24	

В

Accessories

Α	Flowmeter only
В	Thermometer
C,	Thermometer and 30 psi Pressure Gauge
C	Thermometer and 60 psi Pressure Gauge
C	Thermometer and 100 psi Pressure Gauge
CI	Thermometer and Liquid- Filled Pressure Gauge (100 psi)
F1	30 psi Pressure Gauge
F2	60 psi Pressure Gauge
F	100 psi Pressure Gauge
FL	Liquid-Filled Pressure Gauge (100 psi)

Dimension Chart			
Dim	Body Size		
Dim.	1-1/2" or 2"	3"	
I	139.7	165.1	
L	5.5	6.5	
Н	76.2	101.6	
	3.0	4.0	
Ц	99	124.5	
	3.9	4.9	
Ц	114	139.7	
1 ¹ 2	4.5	5.5	

40	
	Flow Range
40	2.5 - 40 gpm (excludes 3" inlet)
100	10 - 100 gpm (1-1/2" or 2" inlets only)
150G	10 - 150 gpm (2" or 3" inlets only)
150	19 - 150 lpm (excludes 3" inlet)
375	38 - 375 lpm (1-1/2" or 2" inlets only)

Wetted Parts and Materials

Body	Anodized Aluminum
Sight Glass	Polysulfone
Vane	Stainless Steel
Spring	Stainless Steel
Pin	Stainless Steel
Gasket	Neoprene

Specifications

-	
Flow Accuracy	±10% full scale
Operating Temperature max	210°F (99°C)
Operating Pressure max	100 psi (6.9 bar)
Optional Thermometer	0 to 250°F
	(-20° to 120°C)
±2% acc	uracy (full scale)
Optional Pressure Gauge	±3% accuracy
	(full scale)

Galvanic corrosion may occur in anodized aluminum components when installed in electrical connection with more noble metals such as copper. Use appropriate installation practices.

¹/₂" and 1" Hot Oil Flowmeters

General Description

Smartflow Hot Oil Flowmeters are durable, vane-operated devices that provide visual indication of flow rate in gallons or liters per minute. The indicator ball is separated from the process by a high temperature gasket and stainless steel plate. A glass window retains the indicator ball. This flowmeter is designed specificall for high temperature circulating loops in industrial processes.

Features and Benefits

- **Compact size** works well in restricted-space locations.
- Rugged construction provides years of dependable service.
- **Optional Temperature Gauge** provides added function.
- 550°F (288°C) Temperature Rating allows installation into high temperature applications.
- 150psi (10.3bar) Pressure Rating satisfies most hot oi cooling pressure requirements.
- Economical for use in many locations throughout the plant.
- Line mounted for easy installation without extra brackets or hardware.

Model Numbers

Model HF4

Stainless steel body with 1/2"NPT connection 2-6 GPM or 5-22 LPM scale.

Model No.	Temp. Gauge	Inlet Size	Flow Range
HF4-A-60	no	½"NPT	2-6 gpm
HF4B-A-220	no	1⁄2"BSPP	5-22 lpm
HF4-B-60	IF4-B-60 yes		2-6 gpm
HF4B-B-220	yes	1⁄2"BSPP	5-22 lpm

L = 3.75" (95.3mm) W = 1.5" (38.1mm) H = 1.5" (38.1mm)

Model HF8

Carbon steel body (black oxide finish) with 1"NPT connection, 5-40 GPM or 20-150 LPM scale

Model No.	Temp. Gauge	Inlet Size	Flow Range
	ouugo		- i tango
HF8-A-40	no		5-40 gpm
HF8-A-1500	no		20-150 lpm
HF8-B-40	yes	INPI	5-40 gpm
HF8-B-1500	yes		20-150 lpm

L = 4.75" (120.6mm) W = 2.25" (57.2mm) H = 2.25" (57.2mm)

Wetted Parts and Materials

Viewing Window	Glass
Vane.	Stainless Steel
Spring	Stainless Steel
Pin	Stainless Steel
Gasket	Non-Asbestos Fiber
Magnet	Sintered Alnico 8HE

Specifications

Operating Temperature max	550°F (288°C)
Operating Pressure max	.150 psi (10.3 bar)
Flow Accuracy	±10%

Design and specifications are subject to change without notice.

plastixs

SMARTFLOW[®] Dr. Eddy[®] Turbulent Flow Indicators with FCI Technology

Dr. Eddy diagnoses flow condition.

Using Fluid Characteristic Indication (FCI) technology, Dr. Eddy displays the condition of the water as it relates to cooling efficiency: lamina flo , transitional flo , or turbulent flo .

Dr. Eddy has four scales built into the meter: three scales for FCI and one scale for flow rate. FCI Scales are selectable and correspond to cooling line port size: 1/4", 3/8", or 1/2". Flow rate scale can be referenced quickly for additional functionality.

The flow scale displays flow rat in gallons or liters per minute depending on the model. A dual scale temperature gauge is standard on all models for process comparison to the FCI Scales.

Dr. Eddy applies the science of heat transfer, diagnosing the condition

of cooling water lines at a glance. Cooling water capacity can be conserved plant-wide by using the minimum amount of flow that will produce turbulence on all presses. It may be possible to delay costly water system upgrades by optimizing the flow effectivi

Turbulent Flow Facts

Turbulent Flow Basics

Turbulent water flow is much more efficient at removing heat in a cooling syst than water flowing under laminar conditions. Once turbulent flow is achieved increasing the flow rate does not significantly improve the cooling rate of th system.

In molding applications, many mold operators try to maximize the flow of water through their cooling systems to ensure turbulent flo . Doing so increases energy costs for pumping more water than necessary through the system. This practice may also limit the amount of cooling water available for cooling additional molds on the same cooling system circuit.

By insuring turbulent flow using FCI Technology, less water can be used in the molding process, saving precious resources.

Try our on-line Turbulent Flow Calculator:

www.SMARTFLOW-USA.com/turbulent-flow-rate-calculator

Flow is likely to be turbulent for Reynolds numbers above 4000. Reynolds Number (Re) is a dimensionless quantity used to predict fluid flo patterns. Re = (Velocity x Diameter) ÷ Kinematic Viscosity Kinematic Viscosity of water at 20°C ($68^{\circ}F$) = 1cSt. Geometry and roughness inside flow passages will affec Turbulent Flow. Want to know more about Turbulent Flow? Take our Scientific CoolingSM class!

Dr. Eddy[®] Turbulent Flow

Model Number

factory for details

							Wetted Parts and Materials
Brass Ends Inlet Size 1/4"NPT	FC3	-	B	-	E	Scale Units English (Temp in °E and	End CapsBrass or Glass-Filled Nylon BodyPolysulfone Indicator RingSilicone Rubber PistonAcetal SpringStainless Steel
1/4"BSPP 3/8"NPT 3/8"BSPP	FC2B FC3 FC3B				м	Flow in GPM) Metric (Temp in °C and	O-RingsEPDM Cap ScrewsStainless Steel Gauge BlockBrass Optional Quick-Connect FittingsBrass
Inlet Size 1/4"NPT 1/4"BSPP 3/8"NPT 3/8"BSPP	FCP2 FCP2B FCP3 FCP3B		BE	A Ti Ti	cce herr	Flow in LPM) ssories nometer (standard) nometer with quick-	Specifications Flow Range
10% glycol s available. Con	cale is tact the			CC	onne	ect socket and plug	±2% accuracy (full scale)

The addition of glycol to cooling water can have a dramatic effect on Turbulent Flow, increasing the flow rate needed to achieve optimum cooling efficien .

SMARTFLOW Flow Regulators

Why use SMARTFLOW Flow Regulators?

- Create Repeatable and Balanced Processes Multiple circuits within an injection mold often have differen cooling requirements. Cooling water will normally follow the path of least resistance leaving some circuits starved for water in manifolds without regulators. Individual circuit control allows the operator to direct the process cooling water where needed to produce repeatable finished part qualit.
- Optimize Cooling Capacity

By applying the principles of Turbulent Flow, cooling circuits can be optimized for efficient cooling, conserving water a electricity. Additional water flow rate beyond turbulent fl condition provides diminishing returns illustrated by the chart below.

Try our On-Line Calculators for Injection molders accessible from the home page:

www.SMARTFLOW-USA.com

Scientific Cooling Calculator extracts cooling water flow rate, heat transfer, processing temperatures, and overall cooling requirements based on polymer type, processing temperature, shot weight and other variables.

Turbulent Flow Calculator flow rate needed to achieve turbulence based on the Reynolds Number, cooling water temperature and inside diameter of the cooling channel. Implement Scientific CoolingSM Flow Regulators help injection molders use the three R's of Scientific Cooling Reveal, Record, Repeat.

Burger & Brown Engineering recommends placing flow regulators on the return side of the cooling water loop. This position ensures that the cooling lines are full of cooling water. Regulators placed on the supply side may provide only a small stream of water to the cooling lines. The water may not come in contact with all internal cooling surfaces providing inconsistent part cooling.

Using Smartflow Flow Regulators to apply the principles of Turbulent Flow and Scientific Cooling, injection molders optimize cooling water and energy efficiency while providing the bes possible environment to make repeatable parts.

For 3D CAD files of Custom Manifold Assemblies and Standard Components Visit

ARTFLOW Brass Flow Regulators

General Description

Smartflow flow regulators provide a unique, leak-free, single-point manual fl control. This regulator incorporates the proven mechanical flowmeter and integral needle valve in a compact design. Very few moving parts improve reliability and leak-free operation.

Used singly or in combination with a water manifold, the flow regulator allows manual control of individual cooling water lines.

Features and Benefits

- Compact size works well in restricted-space locations.
- Rugged construction provides years of dependable service.
- 210°F (99°C) Temperature Rating allows installation into a wide range of applications.
- Optional Temperature Gauge displays additional process information.
- No Mounting Restrictions ease installation in any position without extra brackets or hardware.

Model Number

	FR3	-	В		25	
Inlet Size						Flow Range
1/4"NPT	FR2				15	0.2 - 1.5 gpm (gallons per
1/4"BSPP	FR2B				10	minute)
3/8"NPT	FR3				25	0.5 - 2.5 gpm
3/8"BSPP	FR3B				80	1 - 8 apm
1/2"NPT	FR4				100	2 -10 lpm (liters per min.)
1/2"BSPP	FR4B				200	5 - 20 lpm
					300	4 - 30 lpm
				A	ccess	sories
			Α	Fle	ow re	gulator only
			В	Th	nermo	ometer

E Thermometer with quick-connect socket and plug (NPT only)

Wetted Parts and Materials

Flow Out Thread Size	.3/8"NPT or BSPP
End Caps & Regulator Body	Brass
Valve Stem & Seat	Brass
Flow Body	Polysulfone
Vane	Nylon
Spring	Stainless Steel
O-Rings	EPDM
Cap Screws	Stainless Steel
Optional Quick-Connect Fitting	gsBrass

Specifications

Flow Accuracy±10% full scale Operating Temperature max......210°F (99°C) Operating Pressure max......100 psi (6.9 bar) Dial Thermometer.....0 to 250°F (-20° to 120°C) ±2% accuracy (full scale)

SMARTFLOW 3/4" & 1" Brass Flow Regulators

3/4" or 1" Mechanical Flowmeters or Tracer [®] Electronic Flowmeters may be attached to this flow regulator for added functionality.

Contact Customer Service for details.

General Description

The large size of this flow regulator is unique in the industry for precise control of 3/4" or 1" cooling water lines. Brass body, valve stem and seat with EPDM o-rings are compatible with most process liquids. The 3/4" flow regulator can be used in combination with a mechanical lceCube™ flow body to add 8 gpm or 30 lpm flow indication. Additional IceCube™ flow body is not available for use with 1" flow regulator.

Mounting Brackets are included for mechanical support.

Wetted Parts and Materials

Body	Brass
Valve Stem & Seat	Brass
O-Rings	EPDM
Mounting Brackets	Powder Coated Steel
Optional Flow Indicator	Parts (3/4" only)
Flow Body	Polysulfone

1 10W Dody	
Vane	Nylon
Spring	Stainless Steel

Specifications

Thread Size	3/4" or 1" NPT(F)
Operating Temperature max	240°F (115°C)
Operating Pressure max	150 psi (10.3 bar)

Model Number

FR6-A	.3/4"NPT, no flow indicato
FR8-A	1"NPT, no flow indicato

FR6-A-80 with 1-8 gpm flow indicato FR6-A-300 ... with 4-30 lpm flow indicato

Dimensions (mm/inches)					
Model	FR6-A	FR6-A-XX	FR8-A		
Р	38.1	38.1	44.5		
В	1.5	1.5	1.75		
6	68.6	68.6	74.9		
C	2.7	2.7	2.95		
ц	134.9	134.9	146.3		
п	5.31	5.31	5.76		
	88.9	120.7	101.6		
L	3.5	4.75	4.0		

$\Delta ELTA - Q \approx$ **Precision Flow Regulator Only**

General Description

Delta-Q is a durable and economical precision flow regulator module that can be used in conjunction with other SMARTFLOW components such as:

- Threaded End Caps ٠
- IceCube[™] Flowmeters
- **Temperature and Pressure Gauges** ٠
- Dr. Eddy® Flowmeter/Turbulent Flow Indicators ٠
- ٠ Tracer® Electronic Flowmeters
- **Cooling Water Manifolds** ٠

The Delta-Q Regulator allows full adjustability of flow volume from unrestricted flow to complete shut off using the manual fl control knob.

The modular design allows users to customize models meeting Scientific Coolin SM requirements for each application. The glassfilled nylon body is lightweight and durable. Internal stainless steel components are resistant to corrosion.

See page 16 for custom assembly specification onto manifolds

Model Number

	F3	- A	- Q
Brass End			Accessories
Caps		Α	Flowmeter only
1/4"NPT	F2	В	Thermometer
1/4"BSPP	F2B	C1	Thermometer and 30 psi
3/8"NPT	F3		Pressure Gauge
3/8"BSPP	F3B	C2	Thermometer and 60 psi
1/2"NPT	F4	-	Pressure Gauge
1/2"BSPP	F4B	C 3	Thermometer and 100 psi
		00	Prossure Gauge
Nylon End		CI	Thermometer and Liquid Filled
Coma		CL	Thermometer and Liquid-Filled
	ED2	= 4	Pressure Gauge (100 psi)
		F1	30 psi Pressure Gauge
1/4°BSPP	FP2B	F2	60 psi Pressure Gauge
3/8"NPT	FP3	F3	100 psi Pressure Gauge
3/8"BSPP	FP3B	FL	Liquid-Filled Pressure Gauge
1/2"NPT	FP4		(100 psi)
1/2"BSPP	FP4B		
		-	
For ouston	almod of	n n n ma In I	

Wetted Parts and Materials

End Caps	Brass or Glass-Filled Nylon
Body	Glass-Filled Nylon
O-Rings	EPDM
Regulator Stem	Stainless Steel
Cap Screws	Stainless Steel
Optional Gauge Bloc	kBrass
Optional Quick-Conr	ect FittingsBrass

Specifications

Operating Temperature max	210°F (99°C)
Operating Pressure max	100 psi (6.9 bar)
Dial Thermometer 0 to 250	°F (-20° to 120°C)
±2% ac	curacy (full scale)
Pressure Gauge0 to 100	psi (0 to 700Kpa)
±3% ac	curacy (full scale)

12

www

Precision Flow Regulator with IceCubeTM Flowmeter

Model Number

	F3	- A	- \	25	- Q
Brass End					
Caps					
1/4"NPT	F2				Flow
1/4"BSPP	F2B			4.5	0.0
3/8"NPT	F3			15	0.2 -
3/8"BSPP	F3B				(gallo
1/2"NPT	F4			25	0.5 - 2
				00	4 0

Nylon End

1/2"BSPP

Caps	
1/4"NPT	FP2
1/4"BSPP	FP2E
3/8"NPT	FP3
3/8"BSPP	FP3E
1/2"NPT	FP4
1/2"BSPP	FP4E

Flow Range

- 0.2 1.5 gpm (gallons per minute)
 0.5 - 2.5 gpm
 1 - 8 gpm
- 2 -10 lpm (liters per minute)
 5 - 20 lpm
 4 - 30 lpm

tiXs

Accessories

A B

F4B

Flowmeter	only	

- Thermometer
- Thermometer and C1 30 psi Pressure Gauge
- Thermometer and C2 60 psi Pressure Gauge
- Thermometer and C3 100 psi Pressure Gauge
- Thermometer and Liquid-Filled Pressure Gauge (100 psi)
 - 30 psi Pressure Gauge F1
- 60 psi Pressure Gauge F2
- 100 psi Pressure Gauge F3
- Liquid-Filled Pressure **FL** Gauge (100 psi)

Wetted Parts and Materials

End CapsBrass	or Glass-Filled Nylon
Flow Body	Polysulfone
Regulator Body	Glass-Filled Nylon
Vane	Glass-Filled Nylon
Spring	Stainless Steel
O-Rings	EPDM
Optional Gauge Blo	ockBrass

Specifications

Flow Accuracy	±10% full scale
Operating Temperatu	re max210°F
	(99°C)
Operating Pressure r	nax100 psi
	(6.9 bar)
Dial Thermometer	0 to 250°F
	(-20° to 120°C)
±2% a	ccuracy (full scale)
Pressure Gauge	0 to 100 psi
	(0 to 700Kpa)
±3% a	ccuracy (full scale)

Model Number

ELTA-O

-						
	FC3	-	В	-	Ε	- Q
Brass End						
Caps						
1/4"NPT	FC2					Scale IInite
1/4"BSPP	FC2B					Scale Onits
3/8"NPT	FC3				Е	English
3/8"BSPP	FC3B					(Temp in °F and
						Flow in GPM)
Nylon End					Μ	Metric
Caps						(Temp in °C and
1/4"NPT	FCP2					Flow in LPM)
1/4"BSPP	FCP2B					,
3/8"NPT	FCP3					
3/8"BSPP	FCP3B					
				A	cce	essories

- **B** Thermometer (standard)
- E Thermometer with quickconnect socket and plug

Wetted Parts and Materials

End Caps	Brass or Glass-Filled Nylon
Regulator Body	Glass-Filled Nylon
Flow Body	Polysulfone
Indicator Ring	Silicone Rubber
Piston	Acetal
Spring	Stainless Steel
O-Rings	EPDM
Optional Gauge Bloc	kBrass
Optional Quick-Conr	nect FittingsBrass

Specifications

Flow Range	0.25 - 2 gpm
	1 - 8 lpm
Accuracy	±10% full scale
Operating Temperature n	nax210°F (99°C)
Operating Pressure max	100 psi (6.9 bar)
Dial Thermometer 0 t	to 250°F (-20° to 120°C)
±	2% accuracy (full scale)

Dr. Eddy is calibrated for use with water only. A 10% glycol scale is available on request.

The addition of glycol to cooling water can have a dramatic effect on Turbulent Flow, increasing the flow rate needed to achieve optimum cooling efficiency.

High Pressure and Temperature Stainless Steel Flow Regulators

General Description

Smartflow High Pressure and Temperature Stainless Steel Flow Regulators are designed for use in hot water or oil cooling systems up to 400°F (204°C) and 250 psi (17 bar).

RTFLOW

These regulators are ideal for connection to temperature control units in an injection molding environment. 1/2"NPT(F) threaded ends are standard. Temperature Gauge is optional.

Stainless steel valve seat and high temperature seals provide long, trouble-free service.

Model Number

Wetted Parts and Materials

Body	Stainless Steel
Viewing Window	Glass
Vane	Stainless Steel
Spring	Stainless Steel
Hinge Pin	Stainless Steel
Gasket Nor	n-Asbestos Fiber
MagnetSint	tered Alnico 8GE
O-Rings	Viton

Specifications

Accuracy	±10% full scale
Operating Temperature max	400°F (204°C)
Operating Pressure max	250 psi (17.2 bar)
Dial Thermometer	0 to 600°F
	(-20° to 300°C)

Manifold/Flowmeter Assemblies

Assembly Specification

TFLOW

The Smartflow manifold line is the platform to control and direct cooling water in many types of industrial process cooling. Flowmeters, Flow Regulators, Ball Valves, Quick Disconnect Fittings and more can be added to manifolds to improve

functionality and process control. Individual cooling lines can be accurately controlled according to the demands of each circuit.

Parallel Stainless Steel Manifold Assemblies are built with flowmeters on one half of the

manifold pair only. Contact the factory if alternate configuration is needed

Burger & Brown Engineering recommends placing flowmeters and regulators on the return side of the cooling loop for best performance.

Model Number

Manifold P/N	8SA-8-3-2-Y	- 6	-3-A-80	-	B3	Q3	-	R	
	Aluminum or Stainless Steel Manifold Consult Catalog Form #188							R	Function Return fluid flow enterin the manifold (default)
*Flowmeter/Regulator installed on each port		r t			S	Supply fluid flow exitin the manifold			
No additional flowmeter/regulato Mechanical Flowmeter Brass Flow Regulator Delta-Q Precision Flow Regulator (pages 3 thru 15) Tracer [®] Electronic Flowmeter Tracer _{VM} Electronic Flowmeter See Tracer Catalog number 190			NA F FR F-Q DD VM		NA B2 B3 B4 H2 H3 H4	Brass No ad Ball V Ball V Ball V Hose Hose	ldtic alve alve Bar Bar Bar	alve onal e 1/4 e 3/8 e 1/2 b 1/ b 1/ b 3/ b 1/	a Type and Fittings valve or fittin 4"NPT 2"NPT 2"NPT 4"ID Hose 8"ID Hose 2"ID Hose
					Q2 Q3 Q4	Quick Quick Quick	Co Co Co	nne nne nne	ct Plug 1/4"ID (200 Series) ct Plug 3/8"ID (300 Series) ct Plug 1/2"ID (500 Series)

Manifold Builder.com

On-Line Part Number Specification Assistance

3D Native CAD files for manifolds and assemblies are available for

download 24/7 at *www.manifoldbuilder.com*

Model Number

Discontinued

SMARTFLOW Mold Temperature Regulators

General Description

The **Smartflow Mold Temperature Regulator** effectively controls mold cooling water temperature between 80°F and 120°F (27° and 49°C) to maintain a steady mold temperature. Installed to control water flow exiting an injection mold, the Mold Temperature Regulator quietly recovers waste heat from the resin shot, working without electricity to reduce shop floor clutter, and cut production costs. In many cases, it is a simple, inexpensive substitute for a conventional electric mold heater.

Cooling water temperature always corresponds to higher mold (steel) temperatures (for example: 120°F water temperature may result in 180°F mold temperature).

Turbulent Flow, Supply Cooling Water Pressure & Temperature

Traditionally, high turbulent flow rates are used in cooling water loops to achieve acceptable heat transfer rates from the mold. High turbulent flow rates are irrelevant when using the Smartflow Mold Temperature Regulator. It regulates cooling water flow leaving the mold to achieve Set Point temperature. The unit is unaffected by supply cooling water pressure and temperature. For example, it automatically compensates for temperature changes of cooling tower water between night and day.

Features and Benefits

- Multiple zone control using several regulators or an optional inlet manifold facilitates effective zone control
- Unaffected by pressure changes the Mold Temperature Regulator uses the thermal expansion principle for operation
- Handles tower water temperature changes - modulates flow to control cooling water temperature
- In-Line mounting installs easily without additional hardware
- **Cost of ownership** typically 1/6 the cost of a conventional electric mold heater
- Maintenance free few internal parts for trouble-free operation
- Energy saving it uses no electricity, conserving precious energy dollars
- Small size cleans up shop floor clutter: no hoses or power cords to trip over
- Integral dial thermometer verifies Set Point temperature
- Optional inlet manifold provides temperature control for multiple zones with one regulator

plastixs

SMARTFLOW Mold Temperature Regulators

Model Numbers

Model	Inlet	Outlet	
WDT2-N2-N4	1/4"NPT(F)	1/2"NPT(F)	
WDT2-S2-P2	1/4" Quick Connect Socket	1/4" Quick Connect Plug	
WDT2-S3-P3	3/8" Quick Connect Socket	3/8" Quick Connect Plug	
WDT2-N2-N4-M	1/4"NPT(F) 7-port Manifold	1/2"NPT(F)	
Manifold Only WDMF-100	1/4"NPT(F) 7 port		

Specifications

Physical

Material	All wetted parts are
	Electroless Nickel-Plated Brass
	& Stainless Steel
O-Rings	Buna-N
Inlet Size	
Outlet Size	1/2"NPT(F)
maximum Press	ure125 psi (8.6 bar)
Weight	3 lbs (1.5 kg)

Visit www.smartflow-usa.com for application data

. ..

Operating

Regulator
Cooling water set point range 80° to 120°F
(27° to 49°C)
Accuracy±1°F Full Scale
5 to 25 gallons (19 to 95 liters) per hour
Regulator operation is more accurate
than dial thermometer.

Dial Thermometer

Range	0 to 250°F
-	(-18° to 121°C)
Accuracy	±1°F Mid Scale
	+2°F Full Scale

Design and specifications are subject to

Turbulent Flow Basics

Turbulent water flow is much more efficient at removing heat in a cooling syst than water flowing under laminar conditions. Once turbulent flow is achieved increasing the flow rate does not significantly improve the cooling rate of th system.

In molding applications, many mold operators try to maximize the flow of water through their cooling systems to ensure turbulent flo . Doing so increases energy costs for pumping more water than necessary through the system. This practice may also limit the amount of cooling water available for cooling additional molds on the same cooling systems circuit.

By insuring turbulent flow using FCI (Fluid Characteristic Indication) Technology, less water can be used in the molding process, saving precious resources.

Try our on-line Turbulent Flow Calculator: www.SMARTFLOW-USA.com/ turbulent-flow-rate-calculator

Expected Rates of Flow

60°F (15°C) Water through Schedule 40 Pipe

Nominal	Flow	Rate
Pipe Size	Gallons per Minute	Liters per Minute
1/4"	3	11
3/8"	6	23
1/2"	10	38
3/4"	15	57
1"	25	95
1-1/4"	45	171
1-1/2"	60	228
2"	100	380
3"	230	870

www.smartflow-usa.com

Turbulent Flow Reference Charts

Approximate Minimum Flow required for turbulence in drilled water passages based on Reynolds Number of 4000

Passage	Nominal Pipe	Minimum Flow in GPM by Temperature			
Diameter	Size	40°F	120°F	200°F	
.44"	1/4"	0.88	0.31	0.18	
.59"	3/8"	1.16	0.42	0.24	
.72"	1/2"	1.41	0.51	0.29	

Passage	Nominal Pipe	Minimum Flow in LPM by Temperature			
Diameter	Size	4°C	49°C	93°C	
11mm	1/4"	3.3	1.2	0.7	
15mm	3/8"	4.4	1.6	0.9	
18mm	1/2"	5.3	1.9	1.0	